A physical picture of atomic motions within the Dickerson DNA dodecamer in solution derived from joint ensemble refinement against NMR and large-angle X-ray scattering data.

نویسندگان

  • Charles D Schwieters
  • G Marius Clore
چکیده

The structure and dynamics of the Dickerson DNA dodecamer [5'd(CGCGAATTCGCG)2] in solution have been investigated by joint simulated annealing refinement against NMR and large-angle X-ray scattering data (extending from 0.25 to 3 A-1). The NMR data comprise an extensive set of hetero- and homonuclear residual dipolar coupling and 31P chemical shift anisotropy restraints in two alignment media, supplemented by NOE and 3J coupling data. The NMR and X-ray scattering data cannot be fully ascribed to a single structure representation, indicating the presence of anisotropic motions that impact the experimental observables in different ways. Refinement with ensemble sizes (Ne) of >or=2 to represent the atomic motions reconciles all the experimental data within measurement error. Cross validation against both the dipolar coupling and X-ray scattering data suggests that the optimal ensemble size required to account for the current data is 4. The resulting ensembles permit one to obtain a detailed view of the conformational space sampled by the dodecamer in solution and permit one to analyze fluctuations in helicoidal parameters, sugar puckers, and BI-BII backbone transitions and to obtain quantitative metrics of atomic motion such as generalized order parameters and thermal B factors. The calculated order parameters are in good agreement with experimental order parameters obtained from 13C relaxation measurements. Although DNA behaves as a relatively rigid rod with a persistence length of approximately 150 bp, dynamic conformational heterogeneity at the base pair level is functionally important since it readily permits optimization of intermolecular protein-DNA interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refined solution structure of the 82-kDa enzyme malate synthase G from joint NMR and synchrotron SAXS restraints.

Determination of the accurate three-dimensional structure of large proteins by NMR remains challenging due to a loss in the density of experimental restraints resulting from the often prerequisite perdeuteration. Solution small-angle scattering, which carries long-range translational information, presents an opportunity to enhance the structural accuracy of derived models when used in combinati...

متن کامل

Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR.

Detailed descriptions of atomic coordinates and motions are required for an understanding of protein dynamics and their relation to molecular recognition, catalytic function, and allostery. Historically, NMR relaxation measurements have played a dominant role in the determination of the amplitudes and timescales (picosecond-nanosecond) of bond vector fluctuations, whereas high-resolution X-ray ...

متن کامل

Refinement of multidomain protein structures by combination of solution small-angle X-ray scattering and NMR data.

Determination of the 3D structures of multidomain proteins by solution NMR methods presents a number of unique challenges related to their larger molecular size and the usual scarcity of constraints at the interdomain interface, often resulting in a decrease in structural accuracy. In this respect, experimental information from small-angle scattering of X-ray radiation in solution (SAXS) presen...

متن کامل

Simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences

The program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic data and paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and/or diamagnetic residual dipolar couplings. Incorporation of these long-range NMR restraints in REFMAC5 can reveal differences between solid-state and solution conformations of molecules or, in...

متن کامل

Combining NMR and small angle X-ray scattering for the study of biomolecular structure and dynamics

Small-angle X-ray scattering (SAXS) and Nuclear Magnetic Resonance (NMR) are established methods to analyze the structure and structural transitions of biological macromolecules in solution. Both methods are directly applicable to near-native macromolecular solutions and allow one to study structural responses to physical and chemical changes or ligand additions. Whereas SAXS is applied to eluc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 46 5  شماره 

صفحات  -

تاریخ انتشار 2007